Silver Optics Co.,LTD:Professional optical mirror grinding, optical lenses mold manufacturing!
English中文(简体)FrançaisРусскийEspañol

Polymer Optics

» About Us » Polymer Optics

Optics made from plastics

"Poly optics" likely refers to the field of polymer optics, which involves the design, fabrication, and application of optical components made from polymers or plastic materials. Polymer optics have become increasingly important in various industries due to their advantages such as cost-effectiveness, lightweight, and ease of manufacturing compared to traditional glass optics.

Here's an overview of poly optics:

1. **Materials**: Polymer optics utilize various types of polymers, including acrylics, polycarbonates, cyclo-olefins, and other engineered plastics. These materials offer different optical properties, such as refractive index, dispersion, and transmission characteristics, suitable for different applications.

2. **Design**: Polymer optics are designed using computer-aided design (CAD) software and optical design tools. Optical engineers optimize the shape, curvature, and surface finish of polymer components to achieve desired optical performance, such as imaging quality, light transmission, and aberration control.

3. **Fabrication**: Polymer optics can be fabricated using various manufacturing techniques, including injection molding, compression molding, diamond turning, and hot embossing. Each method offers advantages in terms of cost, scalability, and precision, depending on the complexity and volume of the optical components.

4. **Applications**: Polymer optics find applications in a wide range of industries, including consumer electronics, automotive, medical devices, lighting, telecommunications, and imaging systems. They are used in products such as camera lenses, LED optics, sensors, displays, laser systems, and optical fibers.

5. **Advantages**: Polymer optics offer several advantages over traditional glass optics, including lower weight, reduced cost, flexibility in design, and ease of mass production. They are also less prone to shattering and can withstand harsh environmental conditions, making them suitable for rugged applications.

6. **Challenges**: Despite their advantages, polymer optics also face challenges such as limited thermal stability, lower optical clarity compared to glass, and susceptibility to scratches and degradation over time. Material selection, surface treatment, and coating technologies are continually being improved to address these challenges.

Overall, polymer optics play a crucial role in modern optical systems, offering innovative solutions for various applications while driving advancements in materials science, manufacturing technologies, and optical design methodologies.

 

Material:

  • PMMA
  • PC
  • COP (z.B. Zeonex)
  • OKP
  • COC (z.B. Topas)
  • SILICONE

Injection moulding technology is ideally suited to the efficient series production of plastic parts. The production process is designed to achieve optimum replication with consistently high quality.

Innovative processes permit the production of optical components with the utmost precision (surface roughness less than 2 nm). New materials are a part of this development. We are happy to advise our customers on the selection of the correct plastic.

 

The manufacture of optical components and systems made of plastic provides a range of advantages:

  • cost-efficient series production
  • consistent replication with the highest optical quality
  • design freedom (complex forms and geometries are possible)
  • assembly functions can be integrated in a component
  • low part weight (a factor of 4 compared with glass)
  • finishing with optical coating possible
  • break resistance
  • About Us

  • Conatct Us

    86.13530516428
    sales@silveroptics.net
    13530516428
    13530516428
  • Share With

  • Precision Plastic Optics for

    Lighting

    Sensing
    Imaging
    Scanning
    Detecting

  • Product Applications

    Illumination

    Medical
    Military
    Scientific
    Consumer

    Electronical

    Industrial

  • Other OEM Applications

    Projection Display
    Telecom Optics
    Safety Products
    Barcode Scanner Optics
    Printer Lenses
    Home Theater Systems
    Flight Simulators

     

     

     

  • ProductLine

    Aspheric Lenses
    (paraboloid, hyperboloid, ellipsoidal)
    Spherical Lenses
    LED Lenses
    Sensor Lenses
    Collimating Lenses
    Diffractive Optics
    Fresnel Lenses
    Cylindrical Lenses
    Plastic Windows
    Aspheric Mirrors
    Free Form Surfaces
    Micro Lens Arrays
    V Groove Gratings
    (back light panel application)